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ABSTRACT

Wheat is one of the most affected cereal crops in the wake of global warming, and is facing great
constraints in enhancing yields to meet the future demand and reducing cost-benefit ratio. Conservation
agriculture (CA) is being promoted as adaptation option to address climate risks. However, there is a
need for the integration of CA and responsive genotypes for suitable exploitation of the benefits of CA
advantage and early sowing advantage; responsive genotype must harbor traits like longer duration for
maturity with mild vernalization requirement, longer coleoptile length along with alternate dwarfing
genes, early seedling vigor to cope up with previous crop residue, and higher biomass with strong sink.
Two high-yielding wheat varieties have been developed in this direction, which are suitable for both
maize-wheat and rice-wheat cropping systems. The yield gains can still be further enhanced by better
understanding of plant-microbe interaction through induced epigenetic changes under the CA and
integrating molecular breeding with traditional breeding.
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awareness about conserving natural resources and
minimizing the ecological footprint. Improved
varieties have always acted as a fulcrum for the
adoption of new technologies for securing the
food production under diverse climatic and
production conditions (Yadav et al., 2010, 2017).
A record food production has been continuously
achieved by India in past few years, however, the
water stress and drought situation are still
continuing to affect wheat production in many
pockets of India. Soils, especially the surface
layer have been overstressed and is showing
fatigue, especially in rice-wheat cropping system
(Sapkota et al., 2017; Ray et al., 2014; Ladha et
al., 2009). Breeders have always played a crucial
role in maximizing the yield potential of every
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Introduction

Globally, more than 2.5 billion people are
consuming wheat, and nearly a billion people are
dependent on maize, particularly in poor sub-
Saharan regions. To keep pace with the increasing
population, wheat yield has to be increased by at
least 15% by the end of this decade, and that too
under the projected atmospheric temperature and
rainfall changes. Climate-smart agriculture
practices like conservation agriculture (CA) are
increasingly being adopted by farmers throughout
the world including India due to increasing
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cropping and production system by developing
compatible diverse plant varieties. Agricultural
production system is highly dynamic and evolving
due to changing climatic conditions and social
needs. Breeding plan should always accommodate
these needs and be modified accordingly.

In absence of effective adaptation through
genetic improvement and management, a one-
degree Celsius increase in average temperature
may reduce the wheat yield by 6.0% and maize
yield by 7.4% (Zhao et al., 2017) generally by
induced earlier anthesis and maturity and
reduction in biomass. The temperature rise may
combine with drought, severe cold and flood, and
therefore projected losses under changing climatic
conditions could be even higher. Although the
effect of changing climate may be offset
marginally by increased CO2 concentration in the
atmosphere resulting in more photosynthesis.
Wheat and maize yields fluctuate more strongly
in Haryana, eastern and central Uttar Pradesh and
Rajasthan in comparison to Punjab (Yadav et al.,
2017), largely because of sudden temperature rise.
Moreover, plant growth stages impacted by the
rise in temperature vary between years, making it
difficult to address the issue of temperature rise
through breeding. Potential yield in wheat can be
realized when the temperature remains around
15°C beyond which rise in temperature reduces
the grain yield by 3 to 4% (Tashiro and Wardlaw,
1989). An increase in temperature reduces the
yield by forcing anthesis and maturity early
(Rahman et al., 2009; Gibson and Paulsen, 1999)
resulting in reduction of kernel number per spike
(Rahman et al., 2009), and lower harvest index
(Prasad et al., 2008). Anthesis is the most
vulnerable growth stage, and even a small period
of higher air temperature (>32-36°C) during this
stage greatly impacts the seed-setting and the
yield (Prasad et al., 2000; Wheeler et al., 2000;
Jagadish et al., 2008). Impact on increased
temperature on wheat yield will likely be greater
in India as the temperature regime in wheat-
growing areas of India is close to the threshold
limit. Sudden rain along with high wind speed
could be another factor of high yield loss. Despite
increased understanding on the time of flowering
under sub-optimal temperature condition,

response of crop plants under supra optimal
conditions is poorly understood (Craufurd and
Wheeler, 2009). Such understanding becomes
important due to more frequent occurrence of
extreme events under projected climatic change.
Identification of phenological traits leading to
yield improvement over the years can throw lights
on the pattern of adaptation to changing climatic
conditions. Conservation agriculture practices
encompassing crop rotation, minimum or no-
tillage with residue retention can be important
intervention to modulate extreme events like high
temperature, sudden downpour and or even
moisture stress.

These issues can be effectively addressed if
breeding is tuned to climate-smart technologies
like CA by developing resilient varieties adaptable
to climate-smart technologies. However, it is well
documented that variation at the species level is
much stronger compared to the resilient variety
of a particular crop to be adaptive to a sharp
change in environment. With evolution of new
fields and growing scientific information,
integration of knowledge is going to be the
biggest challenge in the future. Understanding the
functional variability at molecule, organs, whole
plant and at the population level, and its
integration with diversity at the level of
nucleotide and genes will be relevant for the
development of new genotypes by integrating the
genotype (G) × environment (E) × management (M)
interaction. Plant ideotypes required for changing
patterns of environmental stresses as well as
evolving management practices will be guiding
forces for the breeding outcome. The key
physiological processes like phenology, water and
other input use efficiencies, radiation and CO2

use efficiency need to be assessed under changing
climatic condition and evolving management
practices. Modern breeding tools under such a
situation could prove quite handy for steering
recombination between desirable genetic factors
and select on the basis of genetic values.

Exploiting CA for Developing Next-
generation High Yielding Genotypes

The concept initially given by Edward
Faulkner in 1945 was subsequently evolved by
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Masanobu Fukuoka in 1978, and further refined
as CA practice in Latin American countries for
crop production in a sustainable way under both
irrigated and dryland conditions. Crop residue
management has been the most pertinent issue,
which often restricts in full exploitation of CA in
India and elsewhere. However, recent advances
in planting machinery have provided great
momentum to the adoption of CA. Genotype x
management interaction (Trethowan et al., 2005;
Watt et al., 2005; Sagar et al., 2014, Yadav et
al., 2017) can be further exploited by developing
varieties to harness genotype–tillage–cropping
synergies (Gupta and Yadav, 2014). The selection
of genotypes based on indices involving
coleoptile length, weed competitiveness,
improved biomass, genes with mild vernalization
requirement, and increased duration could help in
evolving CA-adopted genotypes (Yadav et al.,
2019). Slightly taller varieties with longer
coleoptile is an example, where seedlings can
emerge out of heavy residue at surface. Longer
coleoptile can also help in overcoming the
relatively high temperature in October month by
facilitating deeper seeding. Mutation in Rht-B1
(Rht1) or Rht-D1 (Rht2) resulted in reduced
production or perception of phytohormone (GA)
(Peng et al., 1999), which was exploited to
develop semi-dwarf, lodging resistant and
efficient assimilates allocating cultivars, giving
scope for higher application of inputs and higher
yield realization (Brooking and Kirby, 1981;
Evans, 1996; Miralles and Slafer, 1995).
However, the reduction in plant-height gene
simultaneously reduces the coleoptile length due
to which it became imperative to sow these
varieties at a shallow depth. Alternate dwarfing
genes like Rht8, Rht10 and Rht12 and QTLs with
small and additive effects, identified on
chromosome 1A, 2B, 2D, 3B, 3A, 5A, 6A
(Rebetzke et al., 2007; Spielmeyer et al., 2007)
can help in reducing plant height without reducing
the coleoptiles length. Through a continuous
practice of selection under the CA, the adapted
genotypes with appropriate coleoptiles length can
be identified. Addition of organic matter through
residue degradation increases biological activity
and the rate of mineralization in the soil (Singh

and Bhogal, 2014). Genotypes with higher root
biomass can respond better to the enhanced
availability of minerals through higher biomass
accumulation, and thus higher yields can be
obtained. Yield of wheat crop in the northern
plains of India can be enhanced by extending the
duration of the variety (Yadav et al., 2017; Kumar
et al., 2017) also by early sowing to avoid
terminal heat stress. To conserve the residual soil
moisture, and to smoother the weeds which
germinate at the high temperature, wheat
genotypes HD 3117 with spreading growth habits
and large foliage can be highly suitable for CA.
The genetic nature of weed competitiveness of
wheat varieties has been established by the
number of researchers (Wicks et al., 2004; Cosser
et al., 1997; Lemerle et al., 2001). The Indian
Agricultural Research Institute has also released
two wheat varieties HDCSW 18 and HD 3117
having spreading to semi-growth habit at the
juvenile stage along with comparatively greater
plant height (100 to 110 cm). Similarly, early
seeding to consolidate the wheat yield may result
in very early flowering due to high temperature
in absence of suitable vernalization genes, and
can reduce biomass and number of grains per
spike, and adverse impact in yields. It is therefore
important to exploit the allele of vernalization
gene resulting in mild vernalization requirement
in the plant. HDCSW 18, a product of systematic
breeding for CA is highly suited for early seeding.
This has outperformed all genotypes under testing
in multilocation trials because of its mild
vernalization requirement and ability to generate
higher biomass.

Adding Cropping System and Agronomy
Perspective in Breeding for CA

Conservation agriculture can reverse soil
physical structural issues generated by intensive
conventional practices. Poor water holding
capacity with a compact layer within upper 20-30
cm of soil profile in the majority of the rice-
wheat growing areas does not allow exploitation
of strong head and higher biomass to realize more
yields due to often lodging. However, CA
modifies soil environment in such a way that
genotypes with higher biomass will remain in
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standing. Changes in varietal and agronomic
scenarios in other crops in wheat-based cropping
systems can impact the varietal dynamics of
wheat. Without keeping in view of the size of
farming and diversity in the production
environment including cropping systems in India,
often fails at the farmer’s field, or farmers find
the technologies difficult to adopt or with
inconsistent results over the years. Designing of
production technologies (including varieties)
which can get well in prevalent cropping systems
will give a scope to farmers for long-term
investment in better agronomy. Ideotype of wheat
in rice-wheat cropping system will be generally
different from the type suitable for maize-wheat
system. The CA, if combined with designed
breeding of wheat can provide a window of
opportunity to prolong duration of wheat for 20-
30 days for yield maximization with short-
duration basmati rice in sequence. Wheat
genotypes with recessive VRN-1a and VRN-1c
alleles can head appropriately even if they are
seeded early under the high temperature. Wheat
genotypes with suitable vernalization
requirements, higher biomass with a sturdy stem
and sink capacity can further maximize yields.
Various VRN, PPD and RHT genes along with
number of QTLs were identified by researchers
having adaptive role in wheat. Genotypes with
differential adaptations were grown under three
contrasting environments generated by different
tillage-sowing methods. A positive but weak
correlation was found among the grouping pattern
based on molecular markers pertaining to various
VRN, PPD and RHT genes and groupings based
on phenotypic appearance. Therefore, molecular
markers can also be utilized in selection of CA
adaptive genotypes after further validation (Yadav
et al., 2014). CA under maize-wheat also provides
an opportunity to increase the duration of maize
hybrid by at least 10-15 days. Maize hybrids with
a duration of 110 days in kharif can yield 8-9 t
ha-1 easily and can be as remunerative as rice-
wheat system. Just like wheat, high biomass maize
hybrids can not be exploited traditionally because
sudden downpour in monsoon season results in
crop lodging. However, CA can increase
percolation and thereby reduce the water

stagnation in the field. In areas with
comparatively less rain, CA can help in higher
soil water availability through its better retention
and of water in the soil.

Conclusions

Directed breeding toward improved agronomy
including CA and cropping systems have yielded
desirable results in both maize-wheat and rice-
wheat cropping system. The gain can still be
furthered by better understanding of plant-
microbe interactions through induced epigenetic
changes under the CA and integrating molecular
breeding with traditional breeding.
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