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ABSTRACT

Crop growth and yield are directly related to biotic and abiotic stress. Disease infection itself is a major
cause of crop loss each year. Rice blast caused by the fungus Pyricularia Oryzae is one of the biggest
threats to rice production in India. Determination of the disease by conventional method involves an
investment of time, money, and manpower. On the other hand, remote sensing techniques are becoming
very popular for real-time analysis of stress assessment. Keeping this view, a field experiment was
conducted at ICAR-VPKAS, Almora to study the possibility of hyperspectral vegetation indices to
assess the blast disease with 10 rice genotypes each for upland and irrigated conditions. The extent of
disease severity was rated 0-9 based on the extent of the host organ covered by symptoms or lesions. 15
different vegetation indices having a higher correlation coefficient (>0.8) were calculated. The linear
regression models were developed between these indices and disease scores. Out of those TVI and PVI
based models performed best for blast disease severity assessment having R2 and RPD values more than
0.86, 0.83, and 2.68, 2.41, respectively. So TVI and PVI based models can be used for detecting rice
blast, which could be utilized to scan satellite data for regional mapping of blast-affected rice cropping
regions.
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of grain (Chuwa et al., 2015). This everlasting
situation begs for proper monitoring and detection
methods. There are so many conventional ways of
disease detection but they are time-consuming and
costly and most importantly it needs a skilled
operation, so it is not possible to be applied in real-
time detection and not that easy to employ at the
field level limiting their scale of applicability. On
the other hand, macro detection is based on a remote
sensing approach. Remote sensing is a non-
destructive method to detect plant stress at an early
stage of development and holds great promise for
the optimization of the management of commercially
important agricultural crops. Remote sensing,
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Introduction

Rice is the staple food of more than 1/3rd

population of India as well as the World. The devils
of high rice crop production are biotic and abiotic
pressures, which must be avoided if India is to feed
its expanding population. Numerous severe diseases
affect rice, posing a serious danger to crop
productivity. One of the main rice diseases, rice blast
caused by the fungus Pyricularia Oryzae, results in
yield losses of between 11.9 and 37.8% per hectare
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basically spectral data in different scales including
leaf, canopy, and whole field has been widely used
in precession farming. Spectral data can also be
useful in the case of non-destructive detection of
disease and its extent of severity. For this purpose,
the use of spectral data should be in an efficient
manner because only a few ranges of the spectrum
are useful. The spectral reflectance of the region
which lies in the visible range of the electromagnetic
spectra (400-700nm) depends on the plant pigment
and the NIR region from (700-1500nm) region
depends on the internal structure of the leaf and
SWIR region (1500-2500nm) depends on water
present (Sahoo et al., 2015). Based on spectral
reflectance, researchers have developed vegetation
indices to detect the particular stress present in crop.
As a plant disease have a major effect on leaf
chlorophyll and internal cell structure so a significant
change in spectral response makes vegetation indices
very useful for disease detection. Some investigation
shows the potential of indices for disease detection
and characterization. A vegetation index can be
calculated by rationing, differencing rationing,
differences, and sums and by forming linear
combinations of spectral band data. The sensitivity
of those indices is higher than individual spectral
bands for the detection of biomass-related
observation (Asrar et al., 1984). There are no such
significant indices for disease detection but the
existing physiological and biochemical indices are
useful for disease studies. The indices like NDVI
(Rouse et al., 1974), SIPI (Peñuelas et al., 1995),
PRI (Gamon et al., 1992), ARI (Gitelson et al., 2001),
GM1 and GM2 (Gitelson & Merzlyak, 1997),
PSSRa, PSSRb, and PSSRc (Blackburn, 1998),
TCARI/OSAVI (Haboudane et al., 2002) and ZM
(Zarco-Tejada et al., 2001) were used for several
studies. Devadas et al. (2009) showed that narrow
band indices representing changes in non-chlorophyll
pigment concentration and the ratio of non-
chlorophyll to chlorophyll pigments proved more
reliable in discriminating rust infected leaves from
healthy plant tissue. But there is hardly any study to
identify the appropriate VI for assessing the blast
disease severity in India. The objective of the present
study is to identify an appropriate VI-based
regression model to assess rice blast and its
severity.

Materials and Methods

Experimental setup

In this present study, a field experiment was
conducted at ICAR-Vivekananda Parvatiya Krishi
Anusandhan Sansthan, Almora (29.59° N latitude,
79.64° E longitude and at an altitude of 1245 m above
MSL) in the year of 2019. Almora is known as the
hot spot of rice blast disease where the disease occurs
naturally. 10 different genotypes of rice were grown
for each irrigated condition and upland condition.
Among them, some are blast susceptible and some
are blast resistant and some are blast sensitive, taking
3 replications each laid in randomized block design.

Climate

Hawalbugh farm, Almora is situated at the
foothills of the Himalaya whose climate is the
temperate type with cold winter and moderate
summer. The average annual maximum temperature
is around 23°C and the average minimum
temperature of 10°C. The annual average rainfall
hovers more or less around the figure of 1,152 mm.
For the rice blast disease to occur naturally the most
congenial weather condition should be that air
temperature must be 20-30°C during day time and
much cooler during nighttime with prolonged leaf
wetness (RH > 90%). Almora has the most suitable
weather condition to occur blast naturally that is why
Almora is one of the hotspot regions of rice blast.

Assignment of the score for different blast
disease severity

In this study, 10 genotypes were cultivated each
for rain-fed and irrigated conditions. Necrotic spots
that are roundish, elongated, and have a dark brown
edge that eventually covers the entire leaf are the
classic symptoms of rice blast. According to the
protocol outlined by International Rice Research
Institute (IRRI, 1996), all genotypes of rice grown
at the time of peak infection were scored based on
the degree of disease infection and the area covered
by the necrotic lesion (Table 1).

Collection of canopy reflectance of rice

Canopy reflectance of rice (under both rain-fed
and irrigated conditions) was collected by employing
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Table 1. Description of the different scores of rice blast disease (IRRI, 1996)

Rating Description

Score 0 No lesion observed
Score 1 There is small brown specks of pinpoint size
Score 2 Small roundish to slightly elongated, necrotic gray spots, about 1-2 mm in diameter, with a distinct

Moderately Resistant brown margin. Lesions are mostly spotted on the lower leaves
Score 3 Lesion type is same as in 2, but significant number of lesions on the upper leaves
Score 4 Typical susceptible blast lesions, 3 mm or longer infecting ≤ 4% of leaf area
Score 5 Typical susceptible blast lesions of 3 mm or longer infecting 4-10% of the leaf area
Score 6 Lesion type is same as in score 5 but infecting about 11-25% of the leaf area
Score 7 Lesion type is same as in score 5 infecting about 26-50% of the leaf area
Score 8 Typical susceptible blast lesions of 3 mm or longer infecting about 51-75% of the leaf area many

leaves are dead
Score 9 Typical susceptible blast lesions of 3 mm or longer infecting ≥ 75% leaf area affected

a portable handheld ASD FieldSpec spectro-
radiometer (Analytical Spectral Devices Inc.,
Boulder, CO, USA) for all disease severity levels
(0–9). On a clear, sunny day at noon, the
measurement was taken. The spectroradiometer was
mounted with a 25° field of view and set at a nadir
position at 50 cm from the canopy top. Measurements
of reference reflectance and canopy reflectance were
taken after the instrument had been tuned with a white
reference panel called spectralon (Labsphere, Inc.,
Sutton, NH, USA). Each spectral measurement is the
mean of the sample’s 30 spectral scans. When there
is a change in solar irradiation, optimization must be
done in between the spectral observation. Spectral
measurements of canopy reflectance were made
between 350 and 2500 nm. In both irrigated and
rainfed conditions, we have gathered 30
measurements of canopy reflectance for each disease
severity level.

Pre-processing of canopy spectral reflectance

In order to improve the predictive power of
univariate calibration models, spectral data are often
pre-processed prior to data analysis as variation in
the predictor variables that are unrelated to the
response variable may reduce the predictive ability
of the models. The aim of pre-processing is to reduce
the effects of random noise and improve the signal-
to-noise ratio. The most frequently used filter in
spectral data analysis is Savitzky-Golay filter
(Savitzky and Golay, 1964).

Calculation of spectral vegetation indices

The vegetation indices employed in this study
include common narrow band indices which have
sensitivity towards plant pigment (chlorophyll,
xanthophyll etc.), structural, biochemical, and
physiological properties of plants. Spectral indices
(SIs) are mathematical combinations or ratios of
canopy reflectance mainly in red, green and infrared
spectral bands; they are designed to find functional
relationships between crop characteristics and remote
sensing observations (Wiegand et al., 1990). Using
the plant canopy reflectance at different wavelengths,
various narrow-band spectral indices were calculated.
The equations and the references for these indices
have been presented in Table 2.

Model development and its validation

First of all these indices were correlated with
the score of the rice blast severity. The indices having
a higher correlation coefficient (r ≤ 0.8) were used
to develop linear regression models for disease
severity prediction using 2/3 of the total dataset. Then
these prediction regression models were validated
using spectral indices data for the remaining 1/3
dataset.

Evaluation is an important step of model
verification, which determines how closely a model
represents actual conditions. The accuracy of the
models was assessed with the root mean squared error
(RMSE), the coefficient of determination (R2) and



92 Journal of Agricultural Physics [Vol. 22

Table 2. Details of spectral indices used for regression model development for disease severity prediction

Sl. Index Formula References
No.

Structural indices
1 Green Index (GI) R554/R677 Zarco-Tejada et al. (2005)
2 Green Vegetation Index (GVI) (R682–R553)/(R682+R553) Kauth and Thomas (1976)
3 Modified Simple Ratio (MSR) (R800/R670 – 1)/[(R800/R670)0.5 + 1] Chen (1996)
4 Normalized Difference (R830 – R660)/(R830 + R660) Rouse et al. (1974)

Vegetation Index (NDVI)
5 Perpendicular Vegetation (RNIR –α Rred – b)/(1+α2 ) Richardson and Wiegand

Index (PVI) RNIR,soil = α Rred, soil+b (1977)
6 Renormalized Difference (R800 – R670)/[(R800 + R670)0.5] Roujean and Breon (1995)

Vegetation Index (RDVI)
7 Second Modified Triangular [1.5(1.2*( RNIR – Rgreen) – 2.5 Haboudane et al. (2004)

Vegetation Index (MTVI2) (RRed – Rgreen)]/[(2 RNIR+1)2 –
(6 RNIR – 5 RRed0.5) – 0.5]0.5

8 TVI Triangular Vegetation 0.5 * [120 * (R750 – R550) – 200 * Broge and Leblanc (2000)
Index (TVI) (R670 – R550)]

Biochemical indices
9 Pigment-Specific Normalized R800/R680 Blackburn (1998)

Difference-a (PSNDa)
10 Pigment-Specific Simple R800/R470 Blackburn (1998)

Ratio-c (PSSRc)
11 Modified Chlorophyll Absorption [(R700 – R670) – 0.2 (R700 – R550)] Daughtry et al. (2000)

Ratio Index (MCARI) (R700/R670)
12 Normalized Difference (R762-R527)/(R762+R 527) Marshak et al. (2000)

Chlorophyll Index (NDCI)
Physiological indices

13 Normalized Difference Infrared (R780 – R710)/(R780 – R680) Datt (1999)
Index (NDII)

14 Photochemical Reflectance (R531 – R570)/(R531 + R570) Gamon (1992)
Index (PRI)

15 Red-edge Vegetation Stress r R714 + R752/2-R733 Merton & Huntington
Index (RVSI) et al. (1999)

the residual prediction deviation (RPD). The ratio
of the standard deviation of the measured data (SD)
to the standard error of prediction (SEP) is designated
as RPD which was also used to evaluate the
prediction accuracy of the developed models
(Willimas.,2001).

RPD = SD/SEP

Where Pi is the predicted value, Oi is the observed
value and n is the number of samples.

Chang et al. (2001) classified prediction
accuracies into accurate (RPD > 2), moderate (1.4 <
RPD < 2), and poor (RPD < 1.4), although such a
rule is still being debated (Bellon-Maurel et al.,
2010).

The coefficient of determination (R2) gives an
indication of the quality of trend conformity, with
values of R2 = 1.0 indicating a perfect fit, and lower
values indicating less agreement of data.

The root mean square error (RMSE) was
calculated to evaluate the fitness between the
estimated and measured results.
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Where Pi is the predicted value, Oi is the observed
value and n is the number of samples.

Result and Discussion

Blast disease infection and its scoring

In this study, the proportion of host tissue covered
by the disease’s necrotic lessons, as well as the
quantity and size of the lessons, were used to estimate
the disease severity levels. According to IRRI (1996)
guidelines, the severity of the rice blast was rated on

a scale of 0 to 9. The plant is found to be healthy and
symptom-free at severity level 0, while the plant is
found to be badly damaged by pathogens at severity
level 9. The disease severity levels range from level
0 to level 9, with varying levels of infestation shown
in Fig. 1. In this present study, rice genotypes BL 18
and DH 79 were found to be level 9 under rain-fed
and irrigated conditions, respectively. Severity level
0 was ascribed to the genotypes VL 32475 and DH
94, which were cultivated under rainfed and irrigated
conditions, respectively. Table 3 displays the
specifics of different varieties and the respective
severity levels.

Table 3. Disease rating score (0-9) and entries details under field conditions at Almora, Uttarakhand

                  Rainfed (Upland) condition                                                        Irrigated (lowland) condition
Entry Name Disease rating score Entry Name Disease rating score

BL-18 9 DH-79 9
DSN-140 8 Bala 8
DSN-120 7 DH-30 7
DSN-119 6 DH-33 6

BL-21 5 DH-34 5
BL-6 4 DH-32 4

BL-10 3 DH-44 3
BL-12 2 DH-49 2

VL 32473 1 DH-47 1
VL 32475 0 DH-94 0

Fig. 1. Disease scoring of Rice Blast at VPKAS, Almora
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Response of canopy reflectance to variation
in disease severity level

 In this study, differing levels of disease
infestation showed different spectral responses. The
dynamic changes in leaf reflectance at various disease
infection levels are shown in Fig. 2 (Mandal et al.,
2022). Different stress levels significantly influenced
the spectral response of rice canopy in various
wavelength regions which can be broadly divided
into four spectral groups i.e., visible range (350-
700nm), near-infrared range (NIR) (700-1350nm),

short wave infra-red region I (SWIR I) (1420-
1800nm) and SWIR II (1950 to 2350nm). A healthy
canopy has experienced lower reflectivity in the blue
and red regions of the visible spectrum, higher
reflection in the green region, and high reflectance
in the NIR. The reflectance at the red region was
higher in the seriously damaged plant than in the
healthy plant as the disease severity level progressed.
The spectral reflectance at the visible region is
controlled by the level of leaf pigment. The pathogen
almost caused damage to plant chlorophyll in blast-

Fig. 2. Spectral reflectance of rice canopy under different disease severity levels at Almora under (a) Rainfed
(upland) and (b) Irrigated (lowland) conditions (Mandal et al., 2022)

(a)

(b)
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infected plants. A similar finding was also
investigated by Kobayashi et al. (2016) for panicle
blast disease detection. The reflectance of healthy
plants is higher in the NIR region than that of diseased
plants, and as the severity of the disease increased,
the reflectance in the NIR region steadily dropped.
As a result of the pathogen’s severe infection, the
plant eventually begins to produce reactive oxygen
species like hydrogen peroxide and cellulose
deposition at the site of infection (Throdal-
Christensen et al., 1997; Nishimura et al., 2003),
which are the main causes of producing necrotic
lesions that cause cell damage and ultimately cause
the plant to die. According to Das et al. (2013),
soybean crops infected with the yellow mosaic virus
had a decrease in reflectance in the NIR range. When
compared to the disease-infected plant, the seriously
afflicted plant had higher reflectance in the SWIR
area. This might be explained by the reduced water
content of the leaves of the plants affected by the
blast.

Development of regression model and
validation

A number of spectral indices have been selected
for the estimation of blast disease severity levels with
various combinations of wavelengths. Then linear
regression models were developed among those
indices and disease severity levels. The best-
performing regression models between various
indices and disease severity scores (0-9) are shown
in Table 4. Out of biochemical, structural, and
physiological indices, all the structural indices
performed better than others. Among those indices,
PVI, RDVI, and TVI were found best for disease
severity prediction with R2 values of 0.83, 0.81, and
0.84 respectively for calibration, whereas during
validation those indices could account for a
maximum of 82.8, 82.6, and 86.1% variability of
observed severity level with RPD value of 2.41, 2.39
and 2.68, respectively (Table 4). Among the other
indices, RDVI, MTVI2, MCARI, and RVSI based
regression models performed better for disease

Table 4. Regression model for disease score prediction using Spectral indices

Sl. Index Calibration equation R2 R2 RMSE RPD
No. (calibration) (validation)

Structural indices
1 GI Y=-2.6675X+10.251 0.75 0.78 1.36 2.11
2 GVI Y=11.57X+7.563 0.75 0.78 1.36 1.36
3 MSR Y=-16.28X+17.38 0.67 0.67 1.64 1.74
4 NDVI Y=-17.10X+18.17 0.67 0.67 1.66 1.73
5 PVI Y=-189.7X+2.359 0.83 0.83 1.19 2.41
6 RDVI Y=-19.38X+13.99 0.81 0.83 1.19 2.39
7 MTVI2 Y=15.05X+11.79 0.77 0.79 1.30 2.20
8 TVI Y=-0.362X+10.78 0.84 0.86 1.07 2.68

Biochemical indices
9 PSNDa Y=-15.88X+16.87 0.68 0.68 1.63 1.75
10 PSSRc Y=-0.338X+10.22 0.64 0.60 1.48 1.55
11 MCARI Y=-23.79X+8.486 0.71 0.74 1.47 1.94
12 NDCI Y=-26.24X+23.06 0.51 0.48 2.07 1.38

Physiological indices
13 NDII Y=-14.90X+6.926 0.72 0.70 1.57 1.82
14 PRI Y=51.84X+4.484 0.67 0.70 1.65 1.73
15 RVSI Y=299X+10.11 0.79 0.79 1.30 2.19
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severity level prediction (Table 4). Spectral indices
are nothing but the combination of mathematical
equations of different spectral responses of a different
region of the spectra. Evaluation of existing indices
revealed that the structural indices perform the best
for predicting disease severity. Out of all the indices,
TVI and PVI are the best-suited indices for rice blast
indicated by R2 and RPD values more than 0.8 and
2, respectively during validation. The triangular
vegetation index (TVI) is calculated as the areas of a
hypothetical triangle in spectral space that connects
green peak reflectance minimum chlorophyll
absorbance and reflectance at the NIR region. So,
this index is influenced by the chlorophyll content
and greenness of the plant. In the case of blast disease
as discussed earlier the plant becomes necrotic so
the pathogen damages chlorophyll and cell structure,
so TVI can be a good index for disease severity
measurement. On the other hand in the case of
perpendicular vegetation Index (PVI), the formula
itself depicts that it depends on the reflectance of
NIR and red region. The reflectance from these two
regions depends on the chlorophyll content and
internal structure of the plant leaf. The fungus
Pyricularia damages the internal structure of plants
as well as the chlorophyll content. So, these two
indices TVI and PVI are sensitive to the blast disease.

Conclusion

The present study can be concluded that the
spectral reflectance curve offers scope for the
potential use of remote sensing technology to
distinguish healthy and blast-infected rice crops in a
rapid and cost-effective manner from large and
continuous rice growing areas. Spectral indices based
linear regression models can be used for the
assessment of blast severity levels. TVI and PVI-
based linear regression models were found best in
this regard. In spectral space, the regions of a
hypothetical triangle connecting the green peak
reflectance lowest chlorophyll absorbance, and
reflectance in the NIR region are used to calculate
TVI. On the other hand, PVI also considers NIR and
Red region which is crucial for disease stress. As a
result, these indices are influenced by the amount of
chlorophyll in the plant, how green it is, as well as
the interior structure of the leaf. Given the nature of
the disease and the fact that becoming a necrotic

pathogen destroys cell structure and chlorophyll, TVI
and PVI may be a useful tool for determining the
severity of Rice Blast disease.
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