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ABSTRACT

Remote sensing is increasingly employed in stress management across various agricultural practices,
providing real-time analysis for crop stress that visual observation alone cannot achieve. In India, wheat
production faces a significant challenge from the yellow rust, caused by the Puccinia striiformis f sp.
tritici fungus. Unfortunately, there is a lack of fundamental information on the spectral signature of
wheat yellow rust disease, hindering its real-time detection and management. The current study aims to
characterize the spectral reflectance of wheat affected by yellow rust to detect the sensitive spectral
range. Ten different wheat genotypes were assessed for disease severity on a scale of 0 to 9, based on
the extent of the host organ covered by symptoms or lesions. The results indicate that severely infected
plants (score 9) exhibit higher reflectance in the visible region and lower reflectance in the NIR region.
The alteration in reflectance for the infected plant, compared to the healthy plant, is more noticeable in
the 530-580 nm region in the visible region; 670-740 nm in the red edge region; and 995 nm to 1195 nm
in the NIR range showing correlation coefficients exceeding 0.7. An examination of the change in
reflectance concerning wavelength (1st derivative) indicates a strong correlation between the VNIR
region and disease severity. The red edge position (REP) exhibits the maximum rate of change, referred
to as the red edge value (REV), which is closely linked to disease severity levels. The amplitude of the
red edge peak diminishes with increasing severity levels, with amplitude values for scores 0 and 9 being
0.009575 and 0.005699, respectively. This research underscores the sensitivity of the VNIR and red
edge regions in detecting wheat yellow rust, essential for aerial or satellite-based monitoring of yellow
rust-affected wheat cropping regions.
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Introduction

Wheat (Triticum aestivum L.) holds significant
importance as the second most crucial cereal crop in
India and contributes significantly to the nation’s
food and nutritional security. India holds the position
of being the second-largest global producer of wheat.
To meet the rising food demands sustainably, it is
essential to pursue a strategy of integrated pest and
disease management. According to Savary et al.
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(2019), biotic constraints account for approximately
21.5% of the current yield losses in wheat. Yellow
rust, also known as stripe rust (Puccinia striiformis
[ sp. tritici), a significant wheat disease particularly
in cool and moist climates, holds paramount
importance among biotic factors affecting wheat,
mainly because of their wide distribution, ability to
spread over long distances, and rapid development
under favourable environmental conditions. The
name “yellow (stripe) rust” is derived from the
arrangement of yellow-orange-coloured pustules,
extending from one end to another end of the leaves.
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It starts with the emergence of small, elongated,
yellow uredial pustules aligned in rows along the
leaf veins. As these pustules mature, they rupture,
releasing a yellow-orange mass of urediospores.
After the plants are infected and reach maturity or
experience stress, their tissues turn brown and dry,
giving the plants a withered and scorched appearance.
Continuous monitoring, precise quantification of
disease severity, and effective control methods are
imperative in the current situation. Traditionally,
assessing the extent of diseases and pest damage in
a large plant population relied on visually observing
symptomatic plants, a process known for its time and
labour intensiveness. Moreover, visual assessments
struggle to accurately and swiftly gauge disease
severity when plants react to abiotic stress situations
like drought, extreme temperatures, edaphic
conditions, and high winds. The challenges arise
from the difficulty in visually quantifying these
responses with acceptable levels of accuracy and
speed. However, plant responses to infection often
influence the quantity and quality of electromagnetic
radiation reflected from the plant canopy (Nutter et
al., 2002). This suggests that employing remote
sensing techniques could offer a readily available
means of recording disease severity, providing a more
objective assessment compared to visual evaluations
conducted by raters (Coops et al., 2003; Apan et al.,
2004; Sankaran et al., 2012).

Especially reflectance instituted to be capable
of detecting changes in the biophysical properties of
plants and canopies associated with pathogens
(Moran et al., 1997; Moshou et al., 2005; Jensen,
2007; Ranjan et al., 2012; Sahoo et al., 2015). In
addition, remote sensing may provide a greater means
to objectively quantify disease stress than visual
assessment methods, and it can be used to repeatedly
collect sample measurements non-destructively and
non-invasively (Nilsson, 1995; Moran et al., 1997).
Distinctive alterations in the reflectance spectrum
have been noted in various plant diseases, such as
yellow rust in wheat (Bravo et al., 2003), powdery
mildew in wheat (Graeff et al., 2006), late blight in
tomatoes (Wang et al., 2008), and yellow mosaic
virus in soybeans (Gazala et al., 2013). While
commonly used broadband techniques have proven
effective in distinguishing between healthy and
diseased plants (Sharp et al., 1985; Lorenzen and
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Jensen, 1989; Nicolas, 2004), the differentiation
between healthy plants and those exhibiting mild
symptoms is not always precise. Nonetheless, the
continuous measurement of reflectance
(hyperspectral remote sensing), utilizing a series of
narrow wavelength bands, furnishes relevant
information for accurately discerning diseases and
other stresses affecting plants. Detecting specific
spectral reflectance associated with wheat yellow rust
infection through remote sensing is crucial for large-
scale assessment and monitoring of yellow rust
disease in wheat fields, particularly for strategic crop
management decisions and predicting yield losses.
However, to date, there has been no investigation
into characterizing the reflectance spectra of wheat
to evaluate yellow rust disease in India. The primary
aim of this current study was to analyze the
reflectance spectra linked to yellow rust infection in
wheat, to utilize remote sensing data for disease
detection across extensive areas.

Materials and Methods
Experimental area

A field experiment was conducted, in the New
Area farm of ICAR-Indian Agricultural Research
Institute, New Delhi (28°4’ N latitude, 77°09" E
longitude and at an altitude of 228.16 m above msl)
with wheat as a test crop in the rabi season of the
year 2022-23.10 different wheat genotypes were
sown among which there was a different level of
yellow rust infestation due to their different resistance
against the yellow rust pathogen (Table 1).

Table 1. Disease rating scale of respective wheat
genotypes in IARI farm

Genotype name

HD 3406
HD 3086
DL 22 -16
HD 3454
HD 3407
DL 22-4
HD 3293
HD 3059
HD 2932
HD 2967

Disease Severity score
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Spectral observations of the wheat canopy at two
different dates were taken during the peak infestation
period at the anthesis and grain filling stage
respectively. The climate in New Delhi can be
broadly categorized as subtropical and semiarid,
characterized by hot and dry summers as well as cold
winters. During the infection period, the mean
temperature fluctuated from 8.5 to 13.8. Maximum
relative humidity during the disease infection period
was varying from 98% to 65%. The total rainfall
received during the growing season was 136.1 mm.

Measurement of spectral reflectance of wheat
under different gradient of yellow rust severity

The assessment of yellow rust severity was
conducted once suitable stress conditions were
established, and observations were recorded for
various severity levels. The disease severity ratings
ranged from 0 to 9, by the scale provided by McNeal
et al. (1971) (Table 2).

The canopy reflectance of the wheat at IARI field
was assessed using a handheld ASD FieldSpec4 Std-
Res Spectroradiometer (Analytical Spectral Devices
Inc., Boulder, CO, USA). The spectral resolution is
3 nmat 700 nm, 8 nm at 1400-2100 nm with sampling
intervals (bandwidths) of 1.4 nm at 350-1000 nm
and 1.1 nm at 1001-2500 nm. The captured data was
then resampled to 1 nm bandwidth for all the
measurements. This was carried out to measure
disease severity across 10 levels on a scale of 0 to 9,
in 10 distinct wheat genotypes. The measurements
were conducted on a clear and sunny day between
11:00 am and 1:00 pm. The spectroradiometer,
affixed with a 25° field of view (FOV), was
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positioned at a distance of 1 meter from the top of
the canopy in a nadir orientation. Before capturing
the spectral reflectance, the instrument’s optimization
was ensured using a white reference panel known as
spectralon (Labsphere, Inc. based in Sutton, NH,
USA) which shows 100% reflectance. Reference
reflectance was initially measured to calibrate the
spectroradiometer, followed by the actual canopy
reflectance measurements. Each spectral measure-
ment represented an average derived from 30 spectral
scans of the sample. The optimization process was
reiterated whenever there was a shift in solar
irradiance during spectral observations. The spectral
range for these measurements spanned from 350 to
2500 nm.

Pre-processing of spectroscopic data

The primary objective of pre-processing is to
mitigate the impact of random noise and amplify the
signal-to-noise ratio. One of the most frequently
employed filters in the analysis of spectral data is
the Savitzky-Golay filter. This filter employs a
moving polynomial fit of varying orders, and its filter
size is determined by the formula (2n+1) points,
where ‘n’ signifies half the width of the smoothing
window. The data points situated between these two
‘n’ values are interpolated using the polynomial fit
technique (Savitzky and Golay, 1964).

Correlation analysis of spectral reflectance
and disease severity

The correlation analysis between spectral
reflectance and disease severity was performed to
identify the different spectral regions sensitive to

Table 2. Disease rating scale of respective wheat genotypes in IARI farm

Rating Description

Score 0 No visible disease symptoms

Score 1 Minor chlorotic and necrotic flecks

Score2 Chlorotic and necrotic flecks without sporulation

Score 3 Chlorotic and necrotic areas with very limited sporulation
Score 4 Chlorotic and necrotic areas with limited sporulation

Score 5 Chlorotic and necrotic areas with moderate sporulation

Score 6 Chlorotic and necrotic areas with moderate to high sporulation
Score 7 Abundant sporulation with moderate chlorosis

Score 8 Abundant sporulation without chlorosis

Score 9 Abundant and dense sporulation without chlorosis and necrosis
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yellow rust disease. In this study, the correlation
value 0.6 was considered as a threshold to identify
the sensitive spectral regions

Development of spectral derivatives and red
edge analysis

The initial derivative of the mean reflectance was
computed, and an appropriate order of polynomial
fitting was executed using the least squares method
(Savitzky and Golay, 1964). Investigation into red
edge shifts and the configuration of the red peak in
the first derivative curve was conducted across
various degrees of disease severity. For each infection
level, the wavelength (kre) and amplitude (drre) of
the red peak were determined through a linear
interpolation technique, achieved by fitting a second-
order polynomial equation to the red infrared slope
(Guyot et al., 1988). The spectral characterization
under different disease scores involved assessing the
red edge parameters, specifically Are (the wavelength
of the red edge peak), drre (the amplitude of the red
edge peak in the first derivative reflectance curve),
and X(dr 670-780) (the sum of the first derivative
reflectance amplitudes between 670 and 780 nm).

Results and Discussion
Scoring of yellow rust disease infection

The disease severity levels were estimated by
evaluating the percentage of host tissue covered by
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the chlorotic and necrotic lesions of the disease and
the degree of sporulation. The extent of wheat yellow
rust severity was graded from 0-9. The severity level
0 depicts that the plant is healthy having no symptoms
at all and the disease severity level 9 depicts that the
plant is most severely affected by the pathogen. The
disease severity levels; in-between show various
levels of infestation and severity level gradually
increases from 0 to level 9. Wheat genotypes, HD
2967 and HD 3406 grown under irrigated conditions
were assigned as level 9 and level 0 respectively.
The details of other varieties and their corresponding
severity levels are shown in Table 1.

Response to leaf reflectance pattern with
severity levels of the wheat plant

This investigation revealed a distinct spectral
response that varied with the degree of disease
infestation. The graphical representation in Fig. 1
illustrates the evolving patterns in leaf reflectance
across different levels of disease infestation. As the
severity of the disease increased, there was a
noticeable rise in reflectance in the visible region,
particularly in the red region, where the reflectance
was higher in severely affected plants compared to
healthy ones. The spectral reflectance in this specific
region was primarily affected by the content of leaf
pigments. In plants infected with yellow rust, the
pathogen substantially damaged the plant
chlorophyll.

Spectral Signature

—Score 0
Score 1
Score 2
Score 3

—Score 4
Score 5

—Score 6

—Score 7

—Score 8

—Score 9

0
350 550 750 950 1150 1350 1550 1750 1950 2150 2350
Wavelength (nm)

Fig. 1. Spectral reflectance of yellow rust infected wheat canopy under various severity levels at [ARI farm
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In the near-infrared (NIR) region, the reflectance
of a healthy plant surpasses that of an infected one,
and as the severity of the disease increases, the
reflectance in the NIR region gradually diminishes
(Fig. 1). This reduction in reflectance is associated
with the severe infection by the pathogen, prompting
the plant to generate reactive oxygen species such
as hydrogen peroxide and facilitating cellulose
deposition at the infection site (Thordal-Christensen
etal.,1997; Nishimura et al., 2003). These processes
are key contributors to the formation of necrotic
lesions, resulting in cell damage and eventual plant
death. Similar observations were reported by Das et
al. (2013) for soybean crops infected with yellow
mosaic virus, indicating a decrease in reflectance in
the NIR region. In the shortwave infrared (SWIR)
region, the severely affected plant exhibits higher
reflectance compared to the plant infected with the
disease, potentially attributed to lower leaf water
content in yellow rust-infected plants.

The disparity in reflectance between wheat plants
at various severity levels (score 1 to 9) and that of a
healthy plant was calculated and depicted across the
spectral range of 350 to 2500 nm (see Fig. 2). The
spectral regions where the contrast is notably
pronounced include the yellow band (560 to 590 nm),
red band around 680 to 690nm and the near-infrared
(NIR) range, specifically spanning from 830 to
1300nm. As the severity increases, there is a more
positive difference in the red band and a more
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negative difference in the NIR range. Additionally,
a positive difference in reflectance was observed in
the shortwave infrared region. The absorption in the
visible range (400-700 nm) is predominantly
characterized by electron transitions in chlorophyll
and other plant pigments.

In the near-infrared (NIR) and shortwave infrared
(SWIR) spectral ranges, the spectral reflectance is
significantly impacted by the bending and stretching
of the O-H bond in water and other molecules,
resulting in distinctive absorption peaks occurring
at wavelengths of 970 nm, 1145 nm, 1400 nm, and
1940 nm (Curran, 1989). The reflectance in the near-
infrared region (700-1100 nm) is primarily
influenced by the internal leaf structure. Within the
NIR spectral range, the internal mesophyll structure
undergoes multiple reflections due to differences in
the refractive index of the cell wall and the internal
air cavity, namely the vacuole. As a result, plants
typically exhibit higher reflectance in this region. In
the shortwave infrared region (1100-2500 nm),
reflectance is influenced by the composition of leaf
chemicals and water content (Jacquemoud and Ustin,
2001).

Relationship between disease score and
reflectance pattern

The spectral reflectance at each wavelength
exhibited varying levels of correlation with the
disease severity scores, ranging from 0 to 9, across

0.7
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— Score 2

Score 3

e
% Score 4
a — Score 5
% Score 6
<)
@ — Score 7
<
-03 X —— Score 8
S~
—— Score 9
-0.5 --- Healthy
Spectra
-0.7
-0.9

Fig. 2. Spectral reflectance difference of infected wheat plant with different severity levels with reference to

healthy wheat crop
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Fig. 3. Correlation coefficient (r) between reflectance spectra of wheat plants at different wavelength with
different severity levels of yellow rust infestation in field experiment

the entire spectral range of 350 to 2500nm (depicted
in Fig. 3). The correlation analysis highlighted certain
spectral ranges that displayed a strong relationship
with the score values. By considering a correlation
value of 0.6 or higher as the threshold, specific
wavelength regions that were connected to disease
scores emerged, notably at 580nm, 695nm, and
754nm in the visible region of the spectra. The entire
region of 750 nm to 1340 nm (Near-infrared region)
as well as in the SWIR-1 region from 1560 to 1756
nm, and within the span of SWIR-2 region from 2134
nm to 2320 nm showed a significant negative
correlation with disease score for all the wheat
genotypes cultivated in field conditions.

The yellow rust pathogen is an obligate
biotrophic parasite. The cytoplasm of a urediniospore
travels into the developing germ tube as it grows
over the leaf surface (Kang et al., 2002)
perpendicular to the long axis of epidermal cells
before it reaches stoma (Wang et al., 2009). When
hypha comes in contact with the mesophyll cell, a
haustorial mother cell having two to six nuclei forms
and most of the cytoplasm transfers into the
haustorial mother cell (Kang ef a/., 2002). Haustorial
mother cell has a thick multi-layered wall that
attaches firmly to the host cell wall and from there a
balloon-shaped feeding structure, called Haustorium
is generated. The primary infection hypha will give
rise to many branched hyphae that expand between
host mesophyll cells and produce multiple haustorial
mother cells and haustoria, leading to a branching

network of fungal mycelium establishing inter- and
intracellularly within the host tissue by slowly
destroying the internal mesophyll cell structure.

As aresult of the intense infection caused by the
pathogen, the plant initiates the generation of reactive
oxygen species such as hydrogen peroxide and the
deposition of callose at the infection site (Thordal-
Christensen et al., 1997; Nishimura et al., 2003).
These processes are the primary factors contributing
to the development of necrotic lesions, ultimately
leading to cell damage and the eventual demise of
the plant. Callose, a plant polysaccharide produced
as a temporary cell wall in response to disease stress,
plays a crucial role in inducing significant changes
in spectral reflectance values in the near-infrared
(NIR) ranges. The pathogen profoundly impacts the
mesophyll cells, nearly causing the plant’s demise.
Consequently, at disease severity level 9, there is
minimal distinction between the spectra of the
soil and the plant, as the plant is on the verge of
death.

Response and relationship of 1st derivative of
canopy reflectance to disease severity levels

Ist derivative of spectral responses was
calculated to identify the sensitive band or the
sensitive range of the whole spectra responsible for
yellow rust severity assessment (Fig. 4). 1st
derivative canopy reflectance was correlated with the
measured disease score levels (Fig. 5). Threshold
limit for both positive and negative correlation



222

1.20E-02

7.00E-03

1.00E-03

dR/dA

300

-3.00E-03

Journal of Agricultural Physics

[Vol. 23

~—=Score 0
~——Score 1
~——Score 2

Score 3
~—Score 4
~—Score 5
——Score 6
~—Score 7
~——Score 8

~—Score 9

Wavelength (nm)

-8.00E-03

Fig. 4. Characterization of differential infestation levels of yellow rust by Spectral Derivatives of reflectance of
wheat plants at various yellow rust severity at the field experiment
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Fig. 5. Sensitive spectral ranges for disease severity through correlation analysis of 1st derivative of spectral

reflectance with disease score values

coefficient was considered as 0.7. Very distinguished
observations were found in some specific
bandwidths. From the 1st derivative reflectance
spectra, the visible and NIR region of the whole
spectra were found to be responsive to yellow rust.
Specifically, 530-580 nm region in the visible region;
670-740 nm in the transition zone of the visible-NIR
region; and 995 nm to 1195 nm in the NIR range
showed distinct responses among all the severity

levels. Correlation of 1st derivative reflectance was
found better in visible, NIR and SWIR-1 regions of
electromagnetic spectra (Fig. 5). Higher correlation
was obtained in the region of 460-512, 532-653 and
680-760 nm. 460-512 and 680-760 nm regions were
positively correlated whereas 532-653 nm region was
negatively correlated. A high correlation was also
observed at a few spectral values in the ranges of
995-1195 nm and 1500-1740 nm of SWIR regions.
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Utilizing mathematical transformations on the
reflectance data and deriving the first derivative
enabled the detection of distinct spectral ranges
responsive to different degrees of severity in wheat
yellow rust disease. By assessing the red edge region
of the spectral reflectance (680-760 nm) based on
first derivative values, a notable correlation was
observed between the red edge value (REV) and
disease scores. Confirming the sensitivity of the red
edge region to disease severity levels, correlations
between the first derivative of spectral reflectance
and disease scores were evident. The pathogen
responsible for wheat yellow rust disease causes
damage to the cell structure, leading to the drying of
the plant and the formation of necrotic spots. This
damage to the plant’s chlorophyll content has a
discernible impact on the red edge value.
Furthermore, the correlation of disease score values
in the NIR ranges (995-1195 nm) and SWIR ranges
(1500-1740 nm) is influenced by the combined
effects of cell structure damage and the loss of cell
water. The collective impact of diminished
chlorophyll content and cellular structure damage
designates the VNIR region as the most sensitive for
disease detection.

Influence of disease severity levels on red edge
value

The red edge region is typically defined as the
spectral range spanning from 680 to 760nm. Within
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this red-edge region, there is a highly noticeable and
distinctive change in reflectance as wavelengths vary,
which is valuable for detecting crop stress. When
examining a plant with varying stress levels, two
common observations are made in this spectral range.
One is the occurrence of an inflection point where
the rate of reflectance change transits from positive
to negative, this inflection point is referred to as the
red edge position (REP). Under the influence of
stress, REP moves towards shorter wavelengths,
known as a blue shift. Conversely, during the plant’s
recovery from stress and return to a healthy state,
REP shifts towards longer wavelengths, referred to
as a redshift. The maximum rate of change occurring
at the red edge position is termed as the red edge
value (REV), which exhibits a significant connection
with stress levels. REV represents the highest point
of the first derivative of reflectance. The distinct
difference among all the stress levels was depicted
in 730 nm region, known as the red edge value.
However, in this case, a dip in the curve is observed
at the wavelength of 721 nm (Fig. 6). The peak of
this dip progressively decreases as the severity of
the disease increases, as illustrated in Fig. 6. This is
consistent with findings by Mahlein ez al. (2010) who
found similar red edge reflection patterns studying
sugar beet leaves infected with fungal diseases such
as C. beticola and U. betae. When a plant is
significantly impacted by the condition, the curve’s
incline is less pronounced compared to that of a

Score 0
\ Score 1
\ Score 2

Score 3

Score 4

Score 8

Score 9

710 720 730 740 750 760

-

Fig. 6. Red edge curve of yellow rust infected wheat canopy in field condition
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Table 3. Characteristics of red edge amplitude with
various disease score levels

Disease =~ Amplitude of Sum of 1* derivative
score red edge peak reflectance amplitude
between 680-760 nm
0 0.009575 0.443339
1 0.009547 0.400135
2 0.00896 0.351815
3 0.008434 0.331267
4 0.008409 0.310585
5 0.008337 0.293136
6 0.00789 0.259050
7 0.00675 0.233420
8 0.006101 0.199413
9 0.005699 0.167853
0.012
0.01 )l
- a
o 0.008 ; s ; ... a
s s & & & !
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Conclusions

The study highlights the potential of
hyperspectral remote sensing not only in
characterizing wheat crops infected with yellow rust
disease but also in identifying specific bands that
are sensitive for assessing the severity of the
infection. Noticeable differences in spectral
reflectance were observed across various disease
severity levels, particularly in the visible and near-
infrared (VNIR) range. The application of spectral
transformations, specifically the first derivative (red
edge) pinpointed the most sensitive spectral ranges
as 460 to 760 nm in the VNIR range and 1500 to
1740 nm in the shortwave infrared region for
assessing the yellow rust severity levels. The

y =-0.0005x + 0.0093

R2:0914

: =
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Fig. 7. Relationship between measured disease score values with the red edge values

healthy plant. The data in Table 3 indicates a gradual
reduction in both the peak magnitude and the
cumulative value of the initial derivative of
reflectance within the range of 680-760 nm as the
disease severity escalates. Amplitude of scores 0 and
9 was 0.009575 and 0.005699, respectively (Table
3). Fahrentrapp et al.(2019) reported similar findings
about red edge amplitude for gray mold leaf
infections. A robust association between the severity
of the disease and REV was identified, demonstrating
a substantial coefficient of determination (R?) 0£ 0.91
illustrated in Fig 7.

utilization of a predictive model for yellow rust
disease, incorporating the red edge value (REV) with
R? values of 0.91, surpassing the 0.6 threshold,
indicates significant potential for upscaling in field-
scale applications. This could be achieved using
recently developed multispectral cameras equipped
with a red edge band on airborne platforms, such as
unmanned aerial vehicles.
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