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ABSTRACT

Retrieval of surface soil moisture at higher spatial resolution became effective in recent past. The
current study examined the potential of C-band in EOS-04 SAR data on accuracy of prediction of soil
moisture over large area in a test site i.e., college farm and student farm at College of Agriculture,
PJTAU, Rajendranagar, Hyderabad. The data collected was Level 2 GRD SAR data, providing calibrated
and geocoded SAR images ready for comprehensive analysis. The satellite data was acquired at two
different incidence angles in order to cover the area twice with different orientation. The backscattered
images were converted to sigma naught using ENVI band math Tool. In addition, ERDAS software was
used to layer stack the HH (horizontal-horizontal), HV (horizontal-vertical) and VV (vertical-vertical)
polarization layers. The study has demonstrated the potential of SAR data in accurately estimating soil
moisture content. The results highlighted the significant impact of polarization and incidence angle on
the accuracy of soil moisture estimate. Specifically, the study revealed that like-polarization (HH) is
more sensitive to moisture than cross-polarization (HV). At lower incidence angles, HH polarization is
more sensitive, while at higher incidence angles, VV polarization showed increased sensitivity.
Furthermore, a decrease in incidence angle enhanced soil moisture estimation accuracy. Prediction of
soil moisture using Dubois model further improved the accuracy.
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energy exchange in near-earth space (Xing et al.,
2022). Soil moisture is a crucial component in the
hydrological cycle, impacting runoff, infiltration and
the overall water and energy balance at the land
surface (Weimann et al., 1998). Accurate soil
moisture information is vital for crop growth
monitoring, yield estimation, drought monitoring and
numerous hydrological, meteorological, agricultural
and risk assessment applications (Xing et al., 2019;
Wang et al., 2023).

Traditional soil moisture estimation methods,
such as gravimetric method, neutron probe and time
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Introduction

Soil moisture (SM) plays a significant role in
research involving the soil-vegetation-atmosphere
interfaces and environmental studies, as it regulates
the flow of water and heat energy between the land
and atmosphere through processes such as
evaporation and plant transpiration (Yadav et al.,
2019). It is a critical element in soil impacting
agricultural management, the surface water cycle and
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domain reflectometry, provide accurate measure-
ments at specific points but are limited by their spatial
coverage (Sharma et al., 2018). Remote sensing
technologies offer significant advantages due to their
non-invasive nature and ability to cover large areas
over time, making them highly valuable for
comprehensive soil moisture assessment (Walker et
al., 2004). Microwave remote sensing, is particularly
effective for soil moisture detection giving all-
weather, all-time coverage (Zhang et al., 2021). Its
ability to penetrate clouds, penetrate several
centimetres of soil and its sensitivity to dielectric
properties make it a powerful tool for measuring soil
moisture (Engman, 1990; Jackson et al., 1996).
Synthetic Aperture Radar (SAR) is useful for
estimating soil moisture because its microwave
signals can penetrate clouds and are sensitive to the
dielectric properties. SAR measures soil
backscattering coefficients, which depend on the
incident angle, polarization, dielectric constant and
surface roughness. The dielectric constant and
surface roughness are the main factors affecting soil
backscattering coefficients (Ma et al., 2021). The
dielectric constant, affected by texture, temperature
and moisture are important for finding soil
backscattering coefficients. The principles behind
soil moisture estimation using backscattering
coefficients primarily focus around dielectric
properties, surface roughness and the effects of
polarization and incident angle. The dielectric
constant, which is strongly affected by soil moisture
content, plays an important role since water has a
much greater dielectric constant than dry soil, making
changes in soil moisture highly detectable through
variations in backscattered signals (Dobson et al.,
1985). Dielectric constant is also affected by soil
texture, temperature and salinity, which are crucial
for accurate modeling. Surface roughness impacts
the scattering mechanism of microwave signals, with
smooth surfaces reflecting signals specularly and
rough surfaces causing diffuse scattering (Oh et al.,
1992). Variations in surface roughness can either
obscure or enhance the sensitivity of backscatter to
soil moisture, necessitating precise calibration.
Additionally, the radar’s polarization and incident
angle influence the interaction of microwave signals
with the soil surface and subsurface, with certain
combinations of these parameters enhancing the

backscatter’s sensitivity to soil moisture. Together,
these factors form the foundation for accurate soil
moisture estimation using backscattering
coefficients. Various models describe the relation
between backscattering factors and surface
characteristics. These models include theoretical
models based on physical principles. Semi-empirical
models mix theoretical and empirical data and
empirical models, drawn from actual data. (Bai and
He, 2015). The Dubois model is a widely used
empirical model (Ma et al., 2021) frequently used to
predict soil moisture using SAR data. This model is
particularly valued for its practical use and efficiency
in translating SAR backscattering coefficients into
soil moisture values. The importance of the Dubois
model is emphasized by its extensive use in soil
moisture estimation. Romshoo et al. (2002),
demonstrated its efficiency in matching SAR
readings with field-measured soil moisture. The
Dubois model’s benefits lay in its balance between
simplicity and accuracy, making it a common option
for practical soil moisture estimate despite certain
inherent limits and probable inaccuracies in
roughness and dielectric constant calculations
(Dubois et al., 1995).

In summary, soil moisture is a vital component
in hydrology, agriculture and meteorology, with
remote sensing technologies like SAR, provides
crucial data for large-scale monitoring and
management applications (Thanabalan et al., 2022;
Srivastava et al., 2015).

In this study, we explored soil moisture
estimation using backscattering coefficients at
different polarizations obtained from fine-resolution
SAR data from the EOS-04 (RISAT-1A) satellite.

Materials and Methods
Study area

Soil samples were collected from several fields
at the College of Agriculture, Rajendranagar, at a
depth of 0 to 5 cm, scheduled to align with the
satellite passes on 11 January, 2024 and 13 January,
2024. The study area is mostly flat, with the soil
texture being relatively uniform across different
fields. The fields are predominantly bare, except for
a few where the existing crop was matured cotton
and maize.
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Soil sample collection and moisture estimation

The geographic coordinates (latitude and
longitude) of each sample collection point were
recorded to ensure exact location matching with
satellite data. In each field the soil sample was
randomly collected at three places to minimize the
intra-field soil moisture variability during the
analysis. Soil moisture content was determined using
the gravimetric method, which includes collecting
the soil samples, weighing them immediately to get
the moist weight, drying them in an oven at 105°C
until constant weight is reached and then reweighing
to obtain the dry weight. The soil moisture content
was determined using the following formula:

Soil moisture (%) = ((W1 – W2)/W2) × 100 (1)

W1 = Weight of fresh soil with can – Weight of empty
can

W2 = Weight of Dry soil with can - Weight of empty
can

Soil bulk density

Soil bulk density was measured using a core
sampler to facilitate the conversion of gravimetric
soil moisture to volumetric soil moisture. It was

estimated by dividing the dry soil weight by the
volume of the core sampler used to collect the soil.

Dry weight of soil
Bulk density = –––––––––––––––––––––– (2)

Volume of the core sampler

Volume = πr2h (3)

r = Radius of the core sampler

h = height of the core sampler

Soil roughness

A roughness board was used to measure soil
roughness during the satellite pass which was 0.25
cm. Roughness was measured one time as conditions
were the same as no cultural practices done on the
field. The soil surface was relatively smooth, which
meant that its impact on backscatter values was
negligible. These conditions ensured minimal
variation in roughness, allowing the primary focus
to remain on soil moisture content for backscatter
analysis.

Satellite data

Fine-resolution satellite data from the EOS-04
satellite was obtained from ISRO’s EO data hub,

Fig. 1. Experimental plots at College and Student Farm of College of Agriculture, Rajendranagar
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BHOONIDHI. The satellite uses a Synthetic Aperture
Radar (SAR) sensor operating in the C-band. SAR
technology employs active microwave detection,
which is unaffected by weather conditions or time
of day, allowing for reliable monitoring of soil
moisture levels across varying field conditions. The
data collected was Level 2 GRD SAR data, providing
calibrated and geocoded SAR images ready for
comprehensive analysis. The satellite data was
acquired at two different incidence angles in order
to cover the area twice with different orientation. The
data was resampled to a common resolution of 4.5
m before the analysis. The details of the data are
presented in Table 1.

stack the HH (horizontal-horizontal), HV (horizontal-
vertical) and VV (vertical-vertical) polarization
layers. This integration of many layers permitted a
detailed examination of the backscatter properties.
The RGB of HH, HV and VV polarizations for the
dates 11-01-2024 and 13-01-2024 are shown in the
Figures 2 and 3, respectively.

Table 1. Particulars of satellite data used in the study

                               Specifications
Satellite EOS-04 EOS-04

Sensor SAR SAR
Imaging Mode FRS-1 FRS-1
Polarization HH, HV, VH, VV HH, HV, VH, VV
Date of pass 11-01-2024 13-01-2024
Pixel Spacing 4.5m 2.25m
Incidence angle 26.09° 35.93°

Data processing

The obtained satellite data were processed using
ENVI software. Enhanced Lee filter with a kernel
size of 5x5, was utilized to suppress the speckle noise
in the data. The process was carried out
independently for each polarization data. Further the
backscattered images were converted to sigma naught
using the following equation through ENVI band
math Tool.

σ0 (dB) = 10 log10 (DN2 – N) + 10 log10 (sin ip) – KdB

 (3)
where,
σ0 (dB) is the backscattering coefficient Sigma 0 in
dB
DN is the Digital Number
N is the Image Noise Bias
ip is the per pixel incidence angle
KdB is the Beta0 Calibration Constant

In addition, ERDAS software was used to layer

Fig. 2. Processed and layer stacked image of EOS-04
satellite acquired on 11-01-2024

Fig. 3. Processed and layer stacked image of EOS-04
satellite acquired on 13-01-2024

Deriving backscatter values

Backscatter data for areas of interest (AOI) were
extracted using ERDAS software by establishing
AOIs for the precise sites of soil sample collection.
The backscatter readings inside these AOIs were
recorded for future investigation.

Correlation with ground truth values

The measured backscatter values from the
satellite data were correlated with the ground-truth
soil moisture values determined from the soil samples
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using regression. The coefficient of determination
(R²) was determined to examine the strength and
accuracy of the connection between the satellite-
derived backscatter coefficient and the ground-truth
soil moisture measurements.

Soil moisture estimation using Dubois Model

Backscatter data of the C-band and incidence
angle were utilized to compute the relative soil
permittivity (ε) using Dubois model. Volumetric soil
moisture was estimated using the ε in universal
Topp’s model. Initially, Dubois et al. (1995) created
an empirical model to determine the ε using quad
polarized SAR data. The backscattering coefficient
(σ0) may be determined using HH or VV
polarizations.

The calculation of the dielectric constant is done
using the Dubois algorithm

σ0 = 10-2.75(cos1.5θ/sin5θ )100.028εtanθ(ks sinθ) 1.4λ0.7 (4)

ε′ = log (σ0
HH) 102.75 (cosθ)–1.5 (sinθ)5 (s sinθ)–1.4λ–0.7/

0.028 tanθ (5)

Where,
ε′ = dielectric constant
σ0 = the backscattering coefficient (dB)
θ = local incidence angle
k = wave number
λ =wavelength
s = surface roughness

The value of the dielectric constant obtained
from equation 5 is used to estimate the value of soil
moisture. The dielectric constant value is converted
into soil moisture values using the TOPP algorithm
(1980), namely as follows.

mv = –5.3 × 10–2 + 2.92 × 10–2 ε′2  – 5.5 × 10–4 ε′2 +
4.3 × 10-6 ε′3  (6)

Where,
mv = soil moisture (% by vol.)
ε′ = dielectric constant

Results and Discussion

 This study used both advanced satellite data
processing and traditional gravimetric methods to

assess soil moisture levels across two distinct days
(11 January, 2024 and 13 January, 2024). The
volumetric moisture content was calculated by
multiplying the gravimetric moisture content with
the bulk density of the soil. The data is presented in
Table 2 and 3.

Fine-resolution synthetic aperture radar (SAR)
data obtained from the EOS-04 satellite utilizing the
BHOONIDHI portal was used to evaluate the satellite
data. The Level 2 Ground Range Detected (GRD)
SAR data was processed to produce Areas of Interest
(AOIs) and backscatter values for the VV, HV and
HH polarizations were noted.

Field-measured soil moisture was compared with
backscatter data. On 11 January, 2024, the R² values
for the VV, HH and HV polarizations were 0.7322,
0.7884and 0.1674, respectively (Fig. 4). On 13
January, 2024, the R² values for VV, HH and HV
polarizations were 0.7408, 0.4679 and 0.2234,
respectively (Fig. 5). These results showed that like-
polarizations (VV and HH) show stronger sensitivity
and a better correlation with soil moisture content
compared to cross-polarization (HV) and among the

Table 2. Soil moisture data collected from experimental
plot on 11-01-2024

Sl. Latitude Longitude Volumetric
No. Moisture

Content (%)

1 17.3224 78.4224 28.3
2 17.3224 78.4229 6.5
3 17.3216 78.4226 13.4
4 17.3207 78.4221 4.1
5 17.3209 78.4227 22.8
6 17.3206 78.4229 2.8
7 17.3219 78.4217 10.7
8 17.3207 78.4202 19.5
9 17.3220 78.4080 4.0
10 17.3217 78.4083 3.3
11 17.3215 78.4085 2.8
12 17.3219 78.4082 3.7
13 17.3220 78.4085 2.9
14 17.3208 78.4092 7.5
15 17.3225 78.4108 12.8
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Table 3. Soil moisture data collected from experimental
plot on 13-01-2024

Sl. Latitude Longitude Volumetric
No. Moisture

Content (%)

1 17.3217 78.4080 2.8
2 17.4082 78.4082 5.7
3 17.3214 78.4084 3.3
4 17.3217 78.4084 14.6
5 17.3221 78.4085 13.8
6 17.3220 78.4078 13.7
7 17.3207 78.4092 32.7
8 17.3211 78.4088 18.8
9 17.3226 78.4103 20.0
10 17.3228 78.4101 21.5
11 17.3225 78.4223 20.6
13 17.3219 78.4226 16.3
14 17.3214 78.4226 20.2
15 17.3211 78.4225 17.6
16 17.3210 78.4228 4.4
17 17.3206 78.4229 3.7
18 17.3216 78.4217 11.1
19 17.3220 78.4214 4.1
20 17.3206 78.4201 13.1

like polarizations, VV polarization showed higher
correlation with volumetric soil moisture content.

The incidence angle significantly affected the
relationship between backscatter data and soil
moisture estimates. On 11 January, 2024, the
incidence angle was 26.09 degrees, whereas on 13
January, 2024, it was 35.93 degrees. On 11 January,
both HH and VV polarizations showed a strong
correlation with soil moisture content. In contrast,
on 13 January, VV polarization had a stronger
connection with soil moisture. This suggests that at
lower incidence angles, both VV and HH
polarizations are sensitive to soil moisture, while at
higher incidence angles, VV polarization becomes
more sensitive compared to HH. Cross-polarization
(HV), however, did not show a significant correlation
with soil moisture at either incidence angle.

Dubois model was used to estimate dielectric
constant. The estimated dielectric constant values

(a)

(b)

(c)

Fig. 4. the relationship between SAR backscatter
coefficient and measured soil moisture for (a) HH (b)
HV and (c) VV polarization on 11-01-2024

were then input into the Topp’s model to calculate
the soil moisture content. The estimated soil moisture
values were compared with the measured soil
moisture content, revealing strong correlations with
R² values of 0.83 and 0.80 on 11-01-2024 (Figure
6a) and 13-01-2024 (Fig. 6b), respectively.
Additionally, the Root Mean Square Error (RMSE)
values were 6.5 on 11-01-2024 and 9.0 on 13-01-
2024, further indicating the model’s performance in
predicting soil moisture.

The study of soil moisture estimates using
satellite data analysis and gravimetric approaches
identified a number of important factors that
contributed to the observed outcomes. Because they
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(a)

(b)

(c)

more precisely captured surface scattering effects,
like-polarizations exhibited higher sensitivity and a
better correlation with soil moisture content than
cross-polarizations, which were influenced by
volume scattering from vegetation and other surface
features. Precise measurements of soil moisture were
made possible by the gravimetric approach, which
acted as a trustworthy method for calibrating satellite
data.

The radar incidence angle had a major effect on
backscatter values greater angles decreased the
sensitivity to soil moisture, while lower angles

Fig. 5. The relationship between SAR backscatter
coefficient and measured soil moisture for (a) HH (b)
VV and(c) HV polarization on 13-01-2024

(a)

(b)

Fig. 6. The relationship between Model Estimated Soil
Moisture and measured soil moisture (a) on 11-01-
2024 (b) on 13-01-2024

increased surface scattering. Variations in backscatter
values and their relationship to soil moisture were
also a result of differences in surface and ambient
variables between the two dates.

The integration of the Dubois model in this work
greatly improved the accuracy of soil moisture
estimates using radar data. The model provided a
mathematical foundation for converting radar
backscatter into effective soil moisture estimations
using empirical relationships and calibration data. It
adjusted for different incidence angles, resulting in
constant sensitivity to soil moisture across radar
observations. Furthermore, the Dubois model took
into consideration of surface roughness and
vegetation cover, making it suitable for a wide range
of environmental circumstances. Overall, adopting
the Dubois model enhanced the accuracy and
reliability of soil moisture evaluations, providing a
solid approach for interpreting radar backscatter data
in the context of changing climatic conditions. The
study revealed that polarization, incident angle and
environmental factors are crucial for soil moisture
estimation using satellite data
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Conclusions

The study has demonstrated the potential of SAR
data in accurately estimating soil moisture content.
It highlights the significant impacts of polarization
and incidence angle on the accuracy of these
estimates. Specifically, the study revealed that like-
polarization (HH) is more sensitive to moisture than
cross-polarization (HV). At lower incidence angles,
HH polarization is more sensitive, while at higher
incidence angles, VV polarization shows increased
sensitivity. Furthermore, a decrease in incidence
angle enhanced. soil moisture estimation accuracy.

By examining various SAR polarization modes
and changing incidence angles, researchers can fine-
tune remote sensing systems, enhancing their
effectiveness in agricultural management and
environmental monitoring.

Moreover, empirical model, such as the Dubois
model used in this study, further improved estimation
accuracy. These models help to refine the relationship
between SAR backscatter and soil moisture, leading
to more precise measurements. This fine-tuning and
modeling are essential for optimizing resource
allocation, irrigation scheduling and developing data-
informed soil management strategies. Accurate real-
time soil moisture monitoring through these
enhanced methods can greatly improve agricultural
productivity and water productivity through efficient
irrigation scheduling, sustainability and
environmental conservation efforts.
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